翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

structural rigidity : ウィキペディア英語版
structural rigidity

In discrete geometry and mechanics, structural rigidity is a combinatorial theory for predicting the flexibility of ensembles formed by rigid bodies connected by flexible linkages or hinges.
==Definitions==

Rigidity is the property of a structure that it does not bend or flex under an applied force. The opposite of rigidity is flexibility. In structural rigidity theory, structures are formed by collections of objects that are themselves rigid bodies, often assumed to take simple geometric forms such as straight rods (line segments), with pairs of objects connected by flexible hinges. A structure is rigid if it cannot flex; that is, if there is no continuous motion of the structure that preserves the shape of its rigid components and the pattern of their connections at the hinges.
There are two essentially different kinds of rigidity. Finite or macroscopic rigidity means that the structure will not flex, fold, or bend by a positive amount. Infinitesimal rigidity means that the structure will not flex by even an amount that is too small to be detected even in theory. (Technically, that means certain differential equations have no nonzero solutions.) The importance of finite rigidity is obvious, but infinitesimal rigidity is also crucial because infinitesimal flexibility in theory corresponds to real-world minuscule flexing, and consequent deterioration of the structure.
A rigid graph is an embedding of a graph in a Euclidean space which is structurally rigid. That is, a graph is rigid if the structure formed by replacing the edges by rigid rods and the vertices by flexible hinges is rigid. A graph that is not rigid is called ''flexible''. More formally, a graph embedding is flexible if the vertices can be moved continuously, preserving the distances between adjacent vertices, with the result that the distances between some nonadjacent vertices are altered. The latter condition rules out Euclidean congruences such as simple translation and rotation.
It is also possible to consider rigidity problems for graphs in which some edges represent ''compression elements'' (able to stretch to a longer length, but not to shrink to a shorter length) while other edges represent ''tension elements'' (able to shrink but not stretch). A rigid graph with edges of these types forms a mathematical model of a tensegrity structure.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「structural rigidity」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.